

## ООО «Арго-про»

# **РЕГИСТРАТОР МУР 1001.2 RCS**

Руководство по эксплуатации

АПГУ. 420600.001-29РЭ

# Содержание

| 1 Описание и работа изделия                                                        |
|------------------------------------------------------------------------------------|
| 1.1 Назначение изделия                                                             |
| 1.2 Технические характеристики                                                     |
| 1.3 Устройство и работа                                                            |
| 1.3 Конструкция                                                                    |
| 1.5 Маркирование и пломбирование                                                   |
| 2 Использование изделия                                                            |
| 2.1 Указание мер безопасности                                                      |
| 2.2 Подготовка к использованию и использование                                     |
| 4 Текущий ремонт                                                                   |
| 5 Хранение и транспортирование                                                     |
| 5 Поверка                                                                          |
| Приложение А Внешний вид регистратора                                              |
| Приложение Б Схемы подключения регистратора к источнику электропитания25           |
| Приложение В Примеры схем подключения к приборам учета и                           |
| организации каналов связи с диспетчерским пунктом                                  |
| Приложение Г Примеры схем подключения к дискретным входам и выходам                |
| Приложение Д Схема подключения датчиков температуры                                |
| Приложение ЖСхема подключений при организации канала передачи данных «прибор учета |
| регистратор - пункт диспетчера» с использованием PLC- канала передачи данных между |
| регистратором и прибором учета и GPRS - канала передачи данных между               |
| регистратором и пунктом диспетчера                                                 |

Настоящее руководство по эксплуатации представляет собой документ, предназначенный для ознакомления с принципом работы, устройством и порядком эксплуатации регистратора МУР - 1001.2 RCS, далее регистратор, регистраторы.

Руководство содержит описание регистратора и другие сведения, необходимые для полного использования технических возможностей и правильной его эксплуатации.

Обслуживающий персонал должен иметь общетехническую подготовку, изучить настоящее руководство и пройти инструктаж на рабочем месте по правилам эксплуатации регистратора и мерам безопасности при работе с ним.

### 1 Описание и работа изделия

#### 1.1 Назначение изделия

Регистратор предназначен для использования в системах АСКУЭ, решения задач АСУ ТП и др., в которых предусматривается:

- сбор данных от различных источников информации:- датчиков, приборов учета энергии, приборов учета потребления воды и др., далее приборы учета.
- ведение баз данных, характеризующих хронологию изменения параметров контролируемых процессов;
  - анализ принятых данных;
- формирование сигналов управления исполнительными механизмами и устройствами индикации/оповещения;
  - информационный обмен с верхним уровнем системы АСКУЭ (АСУ ТП);
- управление информационными потоками, взаимодействие с различными сетевыми устройствами (коммутаторами, концентраторами, маршрутизаторами, модемами и т.д.);
- репликация данных по различным физическим каналам с учетом их ранжирования (основной альтернативные);
  - защита информации от несанкционированного доступа.

Программно-технические решения, реализованные в регистраторе, позволяют использовать регистратор для решения широкого круга задач АСУ ТП, как простых одноуровневых, например, в качестве логгеров — устройств протоколирования параметров технологических процессов, регуляторов и устройств автоматики различного назначения, так и сложных многоуровневых с распределенной структурой.

# 1.2 Технические характеристики

## 1.2.1 Общие технические характеристики

| Наименование                                             | Значение                                        |
|----------------------------------------------------------|-------------------------------------------------|
| Режим работы                                             | непрерывный                                     |
| Макс. количество каналов (интерфейсов) связи             | 5                                               |
| Количество каналов (интерфейсов) для связи со            |                                                 |
| средствами верхнего уровня *                             | 3                                               |
| Количество каналов (интерфейсов) для связи с             |                                                 |
| приборами учета*                                         | 5                                               |
| Объемы банков памяти:                                    |                                                 |
| - энергонезависимое ОЗУ                                  | до 1024 КВ                                      |
| - EEPROM                                                 | до 256 КВ                                       |
| - Flash                                                  | до 192 МВ                                       |
| Максимальное количество баз данных                       | 65535                                           |
| Виды баз данных                                          | периодическая, периодическая по                 |
|                                                          | изменениям (событиям), архивная,                |
|                                                          | «Оперативный журнал»,                           |
|                                                          | база аварийных событий                          |
| Максимальное количество приборов учета                   | 65535                                           |
| Формат передаваемых данных при обмене по                 |                                                 |
| интерфейсам связи:                                       |                                                 |
| - количество бит данных в посылке                        | 7 или 8                                         |
| - количество стоповых бит                                | 1 или 2                                         |
| - контроль четности                                      | с контролем четности,                           |
| T. /                                                     | без контроля четности                           |
| Точность хода внутренних часов, с/сут.                   | ± 3                                             |
| Время хранения данных, параметров настройки и            |                                                 |
| ход встроенных часов при отключении                      | 4                                               |
| электропитания (не менее), лет                           | 4                                               |
| Уровни сигнала на выходе поверки, В:                     |                                                 |
| - лог.1                                                  | не менее 3                                      |
| - лог.0 (не более)                                       | не более 0,15                                   |
| Напряжение электропитания                                | ~230 +22-33 В, 50 ±0,5 Гц;                      |
| Мохомион нод потробидомод монимости ВА Вт                | пост. 12±3; пост. 24±1,2                        |
| Максимальная потребляемая мощность, ВА, Вт               | 2,5                                             |
| Характеристики встроенного источника                     |                                                 |
| электропитания:                                          |                                                 |
| - выходные напряжения (в зав. от исполнения), В          | $3,3 \pm 0,2$ или $5 \pm 0,25$ или $12 + 1 - 2$ |
| - максимальный выходной ток, мА                          | 50                                              |
| Габаритные размеры, мм                                   | 156x 95 x 60                                    |
| Способ крепления                                         | на монт. планку 35 мм (DIN-рейку)               |
| Подключение внешних цепей                                | разъемы с внешними                              |
| N ( 5                                                    | клеммными подключениями                         |
| Масса (не более), г                                      | 400                                             |
| Наработка на отказ, час                                  | 40 000                                          |
| Средний срок службы, лет                                 | 10                                              |
| Рабочий диапазон температур окр. воздуха, <sup>0</sup> С | от -40 до +50                                   |

| Относительная влажность окр. воздуха, % | не более 80 при +35 °C |
|-----------------------------------------|------------------------|
| * Из макс. количества каналов связи     |                        |

## 1.2.2 Технические характеристики дискретных входов

| Наименование                               | Значение                     |
|--------------------------------------------|------------------------------|
| Количество входов                          | 4                            |
| Электропитание входных цепей               | внешнее                      |
| Напряжение электропитания входных цепей, В | пост.12± 2,5                 |
| Макс. доп. входное напряжение, В           | 15                           |
| Выходная цепь источника сигналов           | контактная или бесконтактная |
| Электрическое сопротивление источника      |                              |
| сигналов, кОм:                             |                              |
| - в положении «замкнуто» (не более)        | 0,5                          |
| - в положении «разомкнуто» (не менее)      | 15                           |
| Макс. ток во входной цепи                  |                              |
| при входном напряжении 12 В, мА            | 10                           |
| Гальваническая изоляция входных цепей      | транзисторный оптрон         |
| Напряжение изоляции (не менее), В          | 2500                         |

## 1.2.3 Технические характеристики дискретных выходов

| Наименование                                | Значение                  |
|---------------------------------------------|---------------------------|
| Количество выходов                          | 4                         |
| Максимальное коммутируемое                  |                           |
| напряжение, В                               | 36                        |
| Вид гальванической развязки выходных ключей | транзисторный оптрон      |
| Напряжение изоляции не менее, В             | 2500 B                    |
| Вид дискретного выхода:                     |                           |
| - исполнение DO4-1                          | открытый коллектор        |
| - исполнение DO4-2                          | открытый сток             |
| Максимальный ток дискретного выхода, мА:    |                           |
| - исполнение DO4-1                          | 250                       |
| - исполнение DO4-2                          | 1500                      |
| Суммарный ток дискретных выходов, мА        |                           |
| - исполнение DO4-1                          | 600                       |
| - исполнение DO4-2                          | 2500                      |
| Защита выхода:                              |                           |
| - исполнение DO4-1                          | нет                       |
| - исполнение DO4-2                          | самовосст. предохранитель |

#### 1.2.4 Технические характеристики дискретных входов / выходов

| Наименование                                  | Значение                     |  |
|-----------------------------------------------|------------------------------|--|
| Технические характеристики дискретных входов  |                              |  |
| Количество входов                             | 2                            |  |
| Электропитание входных цепей                  | внешнее                      |  |
| Напряжение электропитание входных цепей, В    | пост.12± 2,5                 |  |
| Макс. доп. входное напряжение, В              | 15                           |  |
| Выходная цепь источника сигналов              | контактная или бесконтактная |  |
| Электрическое сопротивление источника         |                              |  |
| сигналов, кОм:                                |                              |  |
| - в положении «замкнуто» (не более)           | 0,5                          |  |
| - в положении «разомкнуто» (не менее)         | 15                           |  |
| Макс. ток во входной цепи                     |                              |  |
| при входном напряжении 12 В, мА               | 10                           |  |
| Гальваническая изоляция входных цепей         | транзисторный оптрон         |  |
| Напряжение изоляции (не менее), В             | 2500                         |  |
| Технические характеристики дискретных выходов |                              |  |
| Количество выходов                            | 2                            |  |
| Максимальное коммутируемое                    |                              |  |
| напряжение, В                                 | 36                           |  |
| Вид гальванической развязки выходных ключей   | транзисторный оптрон         |  |
| Напряжение изоляции не менее,В                | 2500 B                       |  |
| Вид дискретного выхода:                       | открытый коллектор           |  |
| Максимальный ток дискретного выхода, мА:      | 250                          |  |
| Суммарный ток дискретных выходов, мА          | 600                          |  |
| Защита выхода                                 | нет                          |  |

#### 1.2.5 Технические характеристики входов датчиков температуры

| Наименование                      | Значение       |
|-----------------------------------|----------------|
| Тип датчиков температуры          | DS18B20        |
| Диапазон измерения температуры °С | от -55 до +100 |
| Максимальное количество датчиков  |                |
| температуры, шт.                  | 2              |
| Максимальное удаление датчика     |                |
| температуры, м                    | 50             |

#### 1.2.6 Технические характеристики интерфейса связи RS-232

| Наименование                 | Значение         |
|------------------------------|------------------|
| Скорость обмена данными, Бод | от 300 до 115200 |
| Расстояние передачи, м       | до 15            |
| Режим работы                 | полудуплекс      |

#### 1.2.7 Технические характеристики интерфейса связи RS-485

| Наименование                                | Значение         |
|---------------------------------------------|------------------|
| Скорость обмена данными, бод                | от 300 до 115200 |
| Расстояние передачи, м                      | до 1200          |
| Гальваническая развязка (в зав. от исполн.) | есть             |
| Режим работы                                | полудуплекс      |
| Рекомендуемая линия передачи                | витая пара       |

#### 1.2.8 Технические характеристики канала связи PLC

| Наименование                              | Значение     |
|-------------------------------------------|--------------|
| Полоса рабочих частот, кГц                | от 20 до 100 |
| Контроль потока данных                    | есть         |
| Автоматическая коррекция чувствительности | есть         |

#### 1.2.9 Технические характеристики интерфейса связи Ethernet

| Наименование               | Значение                  |
|----------------------------|---------------------------|
| Поддерживаемые протоколы   | TCP/IP, ARP, ICMP, Telnet |
| Поддерживаемые типы сети   | Ethernet 10Base-T         |
| Разъем Ethernet-интерфейса | RJ-45                     |
| Шифрование трафика         | AES 128                   |

#### 1.2.10 Технические характеристики канала связи GSM\GPRS

| Наименование                           | Значение                       |
|----------------------------------------|--------------------------------|
| Рабочий диапазон частот GSM, МГц       | 900 / 1800 / 1900              |
| Выходная мощность радиопередатчика, Вт | 2 (класс 4, на частоте 900МГц) |
|                                        | 1 (класс 1 на частотах         |
|                                        | 1800/1900МГц)                  |
| Передача данных                        | GSM, CSD, SMS, FAX, GPRS       |
| Пакетная передача в режиме GPRS        |                                |
| - GPRS класс                           | 10                             |
| - схемы кодирования                    | от CS1 до CS4                  |
| - поддержка РВССН                      | есть                           |
| - скорость передачи данных, кбод       | до 86                          |
| Скорость передачи данных               |                                |
| в режиме CSD, кбод                     | до 14,4                        |

#### 1.2.11 Технические характеристики радиоканала

| Наименование                              | Значение     |  |
|-------------------------------------------|--------------|--|
| Рабочая частота, МГц                      | 868870       |  |
| Чувствительность приемника, dВm           | -116         |  |
| Макс. вых. мощность радиопередатчика, мВт | 10           |  |
| Метод модуляции                           | 2FSK         |  |
| Контроль потока данных                    | есть         |  |
| Тип разъема для подключения антенны       | SMA (female) |  |

#### 1.2.12 Технические характеристики интерфейса связи USB

| Наименование                        | Значение                        |  |
|-------------------------------------|---------------------------------|--|
| Поддерживаемый стандарт             | USB 2.0                         |  |
| Скорость обмена данными, Мбит/с     | до 3                            |  |
| Расстояние передачи, м              | до 20                           |  |
| Поддерживаемые операционные системы | Windows 98, Windows XP, Windows |  |
|                                     | 7, Windows 8, Linux             |  |
| Драйверы                            | www.ftdichip.com                |  |

#### 1.3 Устройство и работа

#### 1.3.1 Общие сведения

Регистратор является проектно-компонуемым изделием.

Регистратор, в соответствии с проектом его использования, может быть изготовлен с различными видами и количеством интерфейсов (каналов) связи, различными объемами памяти и различными напряжениями электропитания.

Регистратор может образовывать до пяти каналов связи – с приборами учета и до трех каналов связи со средствами верхнего уровня (диспетчерскими пунктами). Каналы связи с диспетчерскими пунктами могут быть образованы через порты «Port 1»...«Port 3» регистратора, каналы связи с приборами учета могут быть образованы через порты «Port 1»... «Port 5» регистратора.

Возможные варианты интерфейсов связи со средствами верхнего уровня и приборами учета приведены в таблице 2, а их технические характеристики в 1.2.

На рисунке 1 приведены схемы, поясняющие способы построения систем сбора и передачи информации с использованием регистратора.

Через порт «Port 3» регистратора может быть организован GSM канал связи с диспетчерским пунктом, через внешний GSM модем, см. рисунок 1(б) и рисунок В.2.

При использовании для связи с приборами учета радиоканала или PLC канала, средства регистратора позволяют организовать маршруты передачи данных к удаленным приборам учета через промежуточные радиомодемы или PLC модемы, см. рисунки 1(в), (г).

Схемы подключений для различных вариантов исполнения интерфейсов связи регистратора приведены в приложении В.

Регистратор также может иметь порт («Port 6»), который может быть аппаратно настроен на один из вариантов:

- 4 дискретных входа;
- 4 дискретных выхода;
- 2 дискретных входа и 2 дискретных выхода;
- прием данных от 2-х датчиков температуры.

Технические характеристики возможных вариантов исполнения порта «Port 6» приведены в 1.2.2...1.2.5, схемы подключения в приложении Г и приложении Д.

Память регистратора включает энергонезависимое оперативное запоминающее устройство - ОЗУ, память типа FLASH и память типа EEPROM.

Энергонезависимое ОЗУ и FLASH - память предназначены для хранения баз данных.

Память EEPROM предназначена для хранения параметров настройки регистратора.

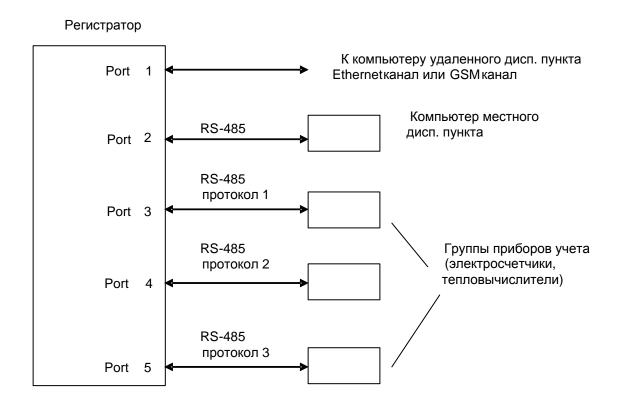
Подробно о назначении и особенностях использования памяти регистратора см. в разделе «Базы данных».

Регистратор имеет встроенные световые индикаторы, которые дают информацию о состоянии регистратора и его режимах работы. В таблице 1 приведено описание работы индикаторов регистратора.

В процессе работы регистратор производит самотестирование. При самотестировании проверяется исправность элементов памяти и часов регистратора.

Электропитание регистратора, в зависимости от исполнения, может осуществляться:

- от сети переменного тока с номинальным напряжением 230 В;
- от источника постоянного напряжения.


Диапазоны рабочих значений напряжения электропитания приведены в 1.2.1.

Схемы подключения напряжения электропитания для различных вариантов исполнения регистратора приведены в приложении Б.

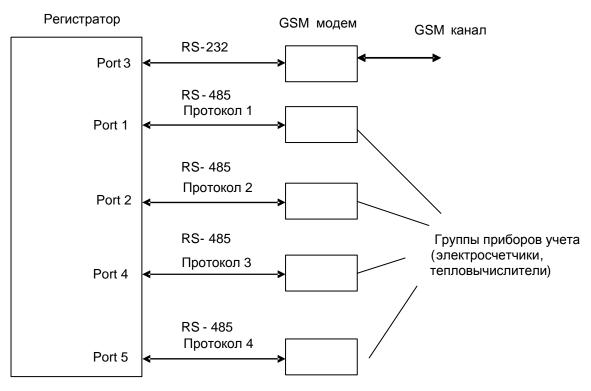
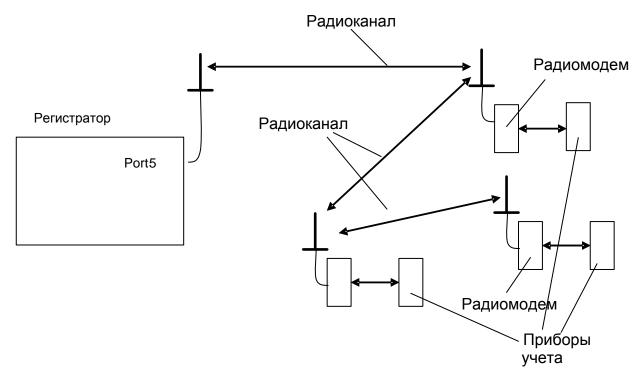
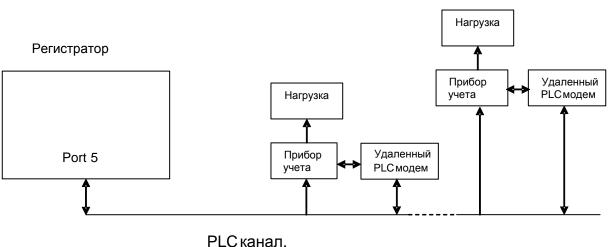

Регистраторы, исполнений — «с интерфейсами связи RS-485», см. таблицу 2, выпускаются (по заказу) со встроенным источником электропитания, см. 1.2.1, предназначенным для электропитания цепей интерфейсов связи приборов учета. Пример схемы подключения встроенного источника электропитания к прибору учета приведен на рисунке B4.

Таблица 1 - работа индикаторов регистратора


| Индикатор     | Описание работы                                    |                                 |  |
|---------------|----------------------------------------------------|---------------------------------|--|
|               | Режим работы                                       | Прерывистая с периодом ок. 1 с. |  |
|               | «Основной»                                         | Короткая пауза                  |  |
| МОДЕ (зел.)   | Режим работы                                       | Прерывистая с периодом ок. 1 с. |  |
|               | «Технологический»                                  | Длинная пауза                   |  |
|               |                                                    | Прерывистая с периодом ок. 1 с. |  |
|               | Авария регистратора                                | Длительность паузы равна        |  |
|               |                                                    | длительности свечения.          |  |
| Link (красн.) | Включается на время выполнения команды,            |                                 |  |
|               | поступившей регистратору со стороны диспетчерского |                                 |  |
|               | пункта                                             |                                 |  |
| GSM (желт.)   | Идет обмен по каналу GSM                           |                                 |  |




(a) - связь с приборами учета через интерфейсы RS-485



(б) - связь с приборами учета через интерфейсы RS-485



(в) связь с приборами учета по радиоканалу



РLС канал. Однофазная электрическая сеть

(г) - связь с приборами учета по PLC каналу

Рисунок1 - схемы, поясняющие способы построения систем сбора и передачи информации с использованием регистратора

#### 1.3.2 Режимы работы регистратора

Регистратор работает в режимах: «основной» и «технологический».

В режиме работы «основной» регистратор обеспечивает:

- -сбор результатов измерений от приборов учета;
- -нормализацию принятых данных преобразование данных к единому формату;
- -ведение баз данных;

- -предоставление доступа к собранной информации;
- синхронизацию времени, как в самом регистраторе, так и в приборах учета, передающих информацию в данный регистратор;
  - ведение «Оперативного журнала»;
  - проведение самодиагностики.

В режиме работы «технологический» производится установка параметров настройки регистратора – настройка регистратора.

#### 1.3.3 Базы данных

Регистратор считывает данные из приборов учета и сохраняет считанные данные в своей памяти - базах данных. Содержимое баз данных регистратора может быть передано на диспетчерский пункт через интерфейсы (каналы) связи регистратора.

В зависимости от вида принимаемых данных (текущие или архивные значения) информация в регистраторе сохраняться в базах данных текущих значений и архивной базы данных.

Записи базы данных текущих значений содержат показания приборов учета, подключенных к регистратору.

Регистратор может формировать два вида баз данных текущих значений:

- периодические базы данных;
- периодические базы данных по изменениям.

Время формирования записей периодической базы данных может задаваться двумя способами:

- циклически (задается период год, месяц, сутки, час или минута и количество записей, которые должны быть сделаны за указанный период);
  - по расписанию, включающему заданные значения даты/времени формирования записей.

Расписание может быть задано:

- на год (устанавливаются месяцы/дни);
- на месяц (дни/часы);
- на сутки (часы/минуты);
- на час (минуты/секунды).

Периодическая база данных по изменениям отличается от периодической базы данных тем, что в установленное время запись в базу данных по изменениям будет добавлена только в том случае, если значения этой записи не совпадают с соответствующими значениями предыдущей записи.

При отсутствии связи с прибором учета, в периодических базах данных и периодических базах данных по изменениям в качестве новых значений записываются данные, зафиксированные

при последнем успешном опросе устройства, и устанавливается признак, указывающий на отсутствие информационной связи с прибором учета.

Архивная база данных содержит копию данных, хранящихся в архивах подключенных к регистратору приборов учета (массивы срезов; часовые, суточные, месячные и годовые архивы; журналы событий).

Периодичность формирования записей архивной базы данных значений задается аналогично заданию цикличности опроса для базы данных текущих значений.

Записи добавляются в базу данных только при обнаружении в архиве прибора учета новых данных. При отсутствии связи с приборами учета, новые записи не формируются.

Кроме перечисленных типов баз данных в регистраторе ведутся «Оперативный журнал» и «база аварийных событий».

В «Оперативном журнале» фиксируются:

- включения / отключения регистратора;
- изменения параметров настройки;
- сведения об аппаратных неисправностях, выявленных в процессе работы регистратора;
- перерывы в электроптании;
- факты обновления ПО;
- факты изменения параметров настройки регистратора;
- доступ к информации со стороны верхнего уровня;
- автоматические перезапуски и перезапуски по инициативе оператора;
- факты превышения допустимого отклонения времени приборов учета от времени регистратора;
  - факты коррекции времени в регистраторе;
  - результат самодиагностики, отсутствие доступа к счетчику и восстановление доступа.

#### 1.3.4 Оценка требуемого размера памяти регистратора

Для оценки размера памяти регистратора, требующегося для размещения базы данных можно воспользоваться соотношениями приведенными ниже.

1.3.4.1 Для базы архивных значений

 $Mapx = N3 * (Nt + \sum Ni), где$ 

Марх - размер базы архивных значений,

N3 – количество записей в базе архивных значений,

Nt – длина заголовка даты записи,

Ni – длина i-го параметра архива в байтах.

Так, например, для суточного архива счетчика электроэнергии «Гамма-1» для архива в 93 записи (глубина архива в регистраторе 3 месяца) и всех параметров счетчика «Гамма-1», предоставляемых регистратором, M арх = 93 \* (6 + 31) = 3441 байт.

1.3.4.2 Для периодических баз данных

$$M\pi = N_3 * (Nt + \sum (\sum Ni)\kappa)$$
, где

Мп - размер периодической базы данных,

N3 – количество записей в периодической базы данных,

Nt – длина заголовка даты записи,

Ni – длина i-го параметра текущих данных в байтах,

к – число приборов учета, данные которых входят в периодическую базу данных.

Для сохранения текущих данных двух приборов учета - счетчика электроэнергии «Гамма-1» и счетчика электроэнергии «Меркурий 200» - в периодическую базу данных, для архива в 2880 записи (глубина архива в регистраторе 2 суток минутных данных) и всех параметров, предоставляемых регистратором для этих счетчиков, Mn = 2880 \* (6 + 42 + 43) = 262080 байт.

Как правило, требуются не все текущие данные прибора учета, и в действительности размер базы текущих данных может быть минимизирован.

#### 1.3.5 Правила размещения баз данных в памяти регистратора

При размещении баз данных в памяти регистратора, следует руководствоваться правилами:

- во FLASH-памяти регистратора следует располагать, базы данных, период формирования которых не чаще 1 раз в месяц, например базы архивных значений;
- в ОЗУ (RAM-памяти) регистратора следует располагать базы данных, период формирования которых не чаще 1 раз в минуту, например периодических баз данных;
- в ОЗУ процессора (CPU-RAM) следует располагать базы данных с периодом формирования от секунды до минуты и которые имеют размер до 16000 байт.

Информация в CPU RAM не сохраняется при выключении электропитания регистратора.

#### 1.3.6 Настройка регистратора перед вводом в эксплуатацию

Настройка регистратора перед вводом в эксплуатацию заключается:

- в организации каналов связи с диспетчерским пунктом;
- «привязке» портов регистратора к группам приборов учета;
- формировании маршрутов к приборам учета, при организации радиоканала или PLC канала;
  - назначении количества и глубины баз данных;
  - установке графика считывания данных с приборов учета.

Настройка регистратора на условия эксплуатации производится с помощью программы «Конфигуратор МУР1001.2 RCS».

Порядок настройки регистратора приведен в документе «Регистратор МУР 1001.2 RCS. Инструкция по настройке».

#### 1.3 Конструкция

Габаритные и установочные размеры регистратора приведены на рисунке 2.

Регистратор выполнен в корпусе из ударопрочной пластмассы.

Корпус регистратора состоит из основания -1 и крышки -2. Основание и крышка соединены винтами.

Разъемы электропитания -3 и портов - 4 установлены в верхней и нижней части регистратора.

Гнезда антенн GSM канала и (или) радиоканала – 5 устанавливаются на выступе крышки -2.

На задней части основания -1 имеется паз -6 и защелка -7 для установки регистратора на монтажную планку 35 мм (DIN-рейку).

В приложении А приведен внешний вид регистратора.

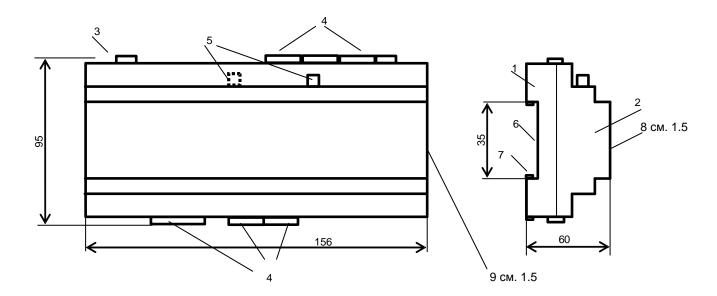



Рисунок 2 - габаритные и установочные размеры регистратора

#### 1.5 Маркирование и пломбирование

На верхней части —8 крышки -2 регистратора нанесены наименование регистратора и товарный знак предприятия-изготовителя, см. рисунок 2.

Дата изготовления регистратора указана в штрих-коде.

Разъемы электропитания, тестовый и индикаторы регистратора имеют маркировку согласно их функциональному назначению.

Разъемы портов имеют маркировку, состоящую из номера порта и номера контакта данного разъема порта. Так маркировка контактов разъема порта «Port 1» начинается с «11»..., маркировка контактов разъема порта «Port 6» начинается с «61».

Регистратор пломбируется пломбировочной лентой между основанием и крышкой корпуса.

Исполнение регистратора указано на маркировочной этикетке -9, см. рисунок 2.

Полное наименование регистратора:

МУР1001.2 RCC H1-H2-H3-H4-H5-H6-H7-H8-H9-H10-H11, где H1..H11– идентификаторы исполнения, см. таблицу 2.

Пример полного наименования регистратора:

MYP1001.2 RCC R128-F8-E16-E-4G12-2F-4G12-PN-X-AC230-TS

Также могут быть использованы сокращенные маркировки регистраторов, см. таблицу 3.

В случае, если регистратор имеет интерфейс (интерфейсы) связи RS-485, и на разъем порта этого интерфейса связи выведено напряжение для электропитания цепей интерфейса связи, то в обозначении соответствующего идентификатора (H4...H8) указывается величина данного напряжения. Например: обозначение «4G12 » указывает на наличие в регистраторе изолированного интерфейса связи RS-485, при этом на соответствующих контактах разъема данного порта присутствует напряжение 12B.

Таблица 2 - идентификаторы исполнения

| Таблица 2 | - идентификаторы испо | лнения                   |                                     |  |  |
|-----------|-----------------------|--------------------------|-------------------------------------|--|--|
| Иденти-   | Варианты              | Описание идентификаторов |                                     |  |  |
| фикаторы  | идентификаторов       |                          |                                     |  |  |
|           |                       | Объем                    | Число соответствует                 |  |  |
| H1        | R128*, R256, R384,    | энергонезависимого       | объему (в килобайтах)               |  |  |
|           | R512, R768, R1024     | ОЗУ                      | оперативного запоминающего          |  |  |
|           |                       |                          | устройства                          |  |  |
|           | F0, F8, F16*, F32,    | Объем Flash              | Число соответствует                 |  |  |
| H2        | F64, F96, F192        | памяти                   | объему ( в мегабайтах) Flash памяти |  |  |
|           | E16, E32*, E64,       | Объем EEPROM             | Число соответствует объему (в       |  |  |
| Н3        | E128, E256            |                          | мегабайтах) памяти EEPROM           |  |  |
|           | X                     |                          | Отсутствует                         |  |  |
|           | 4                     |                          | RS-485 без гальванической развязки  |  |  |
|           | 4G                    |                          | RS-485 с гальванической развязкой   |  |  |
|           |                       |                          | и внешним питанием интерфейсных     |  |  |
|           |                       |                          | цепей                               |  |  |
|           | 4GT                   | Интерфейс связи порта    | RS-485 с гальванической развязкой   |  |  |
| H4        |                       | «Port 1»                 | и встроенным питанием               |  |  |
|           |                       |                          | интерфейсных цепей                  |  |  |
|           | 2                     |                          | RS-232 (TxD, RxD, GND)              |  |  |
|           | 2T                    |                          | RS-232 (TxD, RxD, GND) c            |  |  |
|           |                       |                          | уровнями сигналов 03.3 В            |  |  |
| U         |                       |                          | USB                                 |  |  |
|           | GSM                   |                          | GSM-канал                           |  |  |
|           | WF                    |                          | Wi-Fi                               |  |  |
|           | E                     |                          | Ethernet                            |  |  |
|           | Аналогично            | Интерфейс связи порта    | Аналогично                          |  |  |
| Н5        | «Port 1»,             | «Port 2»                 | «Port 1»,кроме GSM и Ethernet       |  |  |
|           | кроме GSM             |                          | 7 1                                 |  |  |
|           | и Ethernet            |                          |                                     |  |  |
|           | X                     |                          | Отсутствует                         |  |  |
| Н6        | 4                     |                          | RS-485 без гальванической развязки  |  |  |
|           | 4G                    |                          | RS-485 с гальванической развязкой   |  |  |
|           |                       |                          | и внешним питанием интерфейсных     |  |  |
|           |                       |                          | цепей                               |  |  |
|           | 4GT                   |                          | RS-485 с гальванической развязкой   |  |  |
|           |                       |                          | и встроенным питанием               |  |  |
|           |                       |                          | интерфейсных цепей                  |  |  |
|           | 2                     |                          | RS-232 (TxD, RxD, GND)              |  |  |
|           | 2F                    |                          | RS-232 (TxD, RxD, DTR, CTS, RTS,    |  |  |
|           |                       | Интерфейс связи порта    | RI, GND)                            |  |  |
|           | 2T                    | «Port3»                  | RS-232 (TxD, RxD, GND) c            |  |  |
|           |                       |                          | уровнями сигналов 03.3 V            |  |  |
|           | 2FT                   |                          | RS-232 (TxD, RxD, DTR, CTS, RTS,    |  |  |
|           |                       |                          | RI, GND) с уровнями сигналов        |  |  |
|           |                       | _                        | 03.3 B                              |  |  |
|           | U                     | _                        | USB                                 |  |  |
| 1         | WF                    |                          | Wi-Fi                               |  |  |

|     | Аналогично | Интерфейс связи порта                  | Аналогично                         |  |
|-----|------------|----------------------------------------|------------------------------------|--|
| H7  | «Port 1»,  | «Port 4»                               | «Port 1»,кроме GSM и Ethernet      |  |
|     | кроме GSM  |                                        |                                    |  |
|     | и Ethernet |                                        |                                    |  |
|     | X          |                                        | Отсутствует                        |  |
|     | 4          |                                        | RS-485 без гальванической развязки |  |
|     | 4G         |                                        | RS-485 с гальванической развязкой  |  |
|     |            |                                        | и внешним электропитанием          |  |
|     |            | 11 1 0                                 | интерфейсных цепей                 |  |
|     | 4GT        | Интерфейс связи порта «Port 5»         | RS-485 с гальванической развязкой  |  |
|     |            | «Port 3»                               | и встроенным электропитанием       |  |
|     |            |                                        | интерфейсных цепей                 |  |
|     | 2          |                                        | RS-232 (TxD, RxD, GND)             |  |
| Н8  | 2T         |                                        | RS-232 (TxD, RxD, GND) c           |  |
| пъ  |            |                                        | уровнями сигналов 03.3 В           |  |
|     | U          |                                        | USB                                |  |
|     | RN         |                                        | Радиоканал                         |  |
|     | PN         |                                        | PLC-канал                          |  |
|     | X*         |                                        | Отсутствует                        |  |
|     | DI4        |                                        | 4 дискретных входа                 |  |
| Н9  | DO4_1      | Плата                                  | 4 дискретных выхода                |  |
|     | DO4_2      | расширения                             | 4 дискретных выхода                |  |
|     | DIO4_2     | порта 2 дискретных входа и 2 дискретны |                                    |  |
|     |            | «Port 6»                               | выхода                             |  |
|     | AD 1W      |                                        | 2 вх.датч. температуры DS18B20     |  |
|     | AC230      | Напряжение                             | Переменное 230 В                   |  |
| H10 | DC24       | электропитания Постоянное 24 В         |                                    |  |
|     | DC12       |                                        | Постоянное 12 В                    |  |
| H11 | TS         | Температурный                          | От -25 °C до +55 °C                |  |
|     | TE         | диапазон От -40 °C до +70 °C           |                                    |  |

Таблица 3 – таблица соответствия между сокращенными маркировками и полными наименованиями регистраторов

| Сокращенная маркировка | Полное наименование                               |  |
|------------------------|---------------------------------------------------|--|
| 00 01                  | МУР1001.2 RCC R256-F16-E64-GSM-U-4GT — — AC230-TS |  |

#### 2 Использование изделия

#### 2.1 Указание мер безопасности

К работе с регистратором допускаются лица, имеющие право работать с электроустановками до 1000 В и прошедшие инструктаж по технике безопасности на рабочем месте.

Подключение внешних цепей, установка / снятие регистратора должны производиться при отключенном электропитании.

#### 2.2 Подготовка к использованию и использование

- 2.2.1 Извлеките регистратор из упаковки.
- 2.2.2 Произведите внешний осмотр регистратора.
- 2.2.3 Настройте регистратор на условия эксплуатации в составе информационно измерительного комплекса МУР 1001.

Для этого:

- а) Подключите регистратор к источнику электропитания и компьютеру. Схемы подключений приведены в приложениях Б и В.
  - б) На компьютере запустите на исполнение программу «Конфигуратор MУР1001.2RCS».
- в) Переведите регистратор в режим работы «Технологический». Для этого установите перемычку, см. рисунок 2, затем включите электропитание регистратора.

Проконтролируйте включение индикатора «Link».

Разомкните перемычку, проконтролируйте отключение индикатора «Link».

г) Порядок настройки регистратора приведен в документе «Регистратор МУР 1001.2 RCS. Инструкция по настройке».

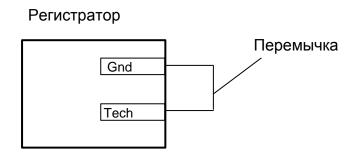



Рисунок 2 - схема установки перемычки для перевода регистратора в режим работы «Технологический»

2.2.4 Установите регистратор на месте использования. Подключите к регистратору электрические цепи входных сигналов, электрические цепи интерфейсов связи и цепи

электропитания согласно схеме проекта использования регистратора в информационно - измерительном комплексе МУР 1001.

2.2.5 Порядок работы с регистратором в составе информационно - измерительных комплекса МУР 1001 приведен в документе «Программное обеспечение «Арго: Энергоресурсы». Руководство оператора».

#### 3 Техническое обслуживание

Техническое обслуживание проводится:

- после монтажа регистратора и связанной с ним аппаратуры;
- после длительного пребывания в нерабочем состоянии;
- после каждого случая выхода условий эксплуатации за установленные пределы (температура, влажность и т.п.);
  - периодически, не реже одного раза в 3 месяца.

К техническому обслуживанию может быть допущен персонал, имеющий специальное техническое образование и изучивший настоящее руководство.

При проведении технического обслуживания необходимо осмотреть регистратор и подсоединенные к нему кабели, опробовать надежность их крепления в клеммных соединителях, при необходимости подтянуть винты крепления.

#### 4 Текущий ремонт

К текущему ремонту регистратора может быть допущен персонал, имеющий специальное техническое образование и изучивший настоящее руководство.

Результаты проведения текущего ремонта отражаются в паспорте на регистратор.

#### 5 Хранение и транспортирование

Условия хранения регистраторов - в упаковке предприятия - изготовителя - по условиям хранения 3 по ГОСТ 15150. Диапазон температур от -50 °C до +70 °C при относительной влажности до 98%. При хранении коробки с упакованными регистраторами должны быть защищены от атмосферных осадков и механических повреждений.

Регистраторы транспортируют всеми видами крытых транспортных средств, кроме не отапливаемых отсеков самолетов в соответствии с требованиями ГОСТ 15150 и правилами перевозки грузов, действующими на каждом виде транспорта.

Вид отправки - контейнерами и мелкая отправка.

При транспортировании коробки с упакованными регистраторами должны быть защищены от атмосферных осадков и механических повреждений.

# 5 Поверка

Поверка регистратора производится согласно документу «Комплексы информационно-измерительные МУР 1001. Методика поверки».

Межповерочный интервал - 5 лет.

Положительные результаты поверки оформляют свидетельством о поверке.

# Приложение A (справочное) Внешний вид регистратора



#### Приложение Б

(обязательное)

Схемы подключения регистратора к источнику электропитания

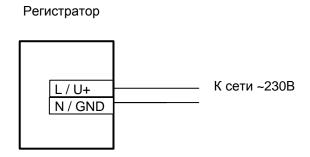



Рисунок Б.1 - схема подключения регистратора к сети ~ 230 B, исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8-H9-AC230-H11

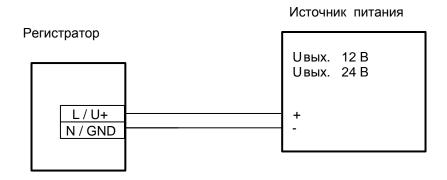



Рисунок Б.2 - схема подключения регистратора к источнику питания при электропитании от источника постоянного напряжения, исполнения регистратора:

МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8-H9-DC24-H11 и МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8-H9-DC12-H11

# Приложение В

(обязательное)

Примеры схем подключения к приборам учета и организации каналов связи

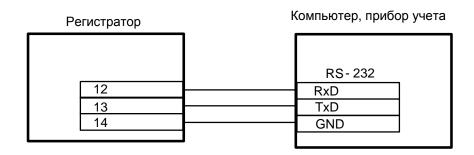



Рисунок В.1 - Интерфейсы связи регистратора и внешнего устройства RS-232, схема приведена при подключении прибора учета к порту «Port 1» регистратора, при подключении к портам «Port 2»...«Port 5» регистратора, нумерация контактов разъемов регистратора соответственно «22,23,24»...«52,53,54»

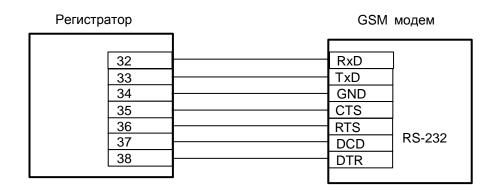



Рисунок В.2 - Интерфейсы связи регистратора и модема RS-232, схема приведена при подключении к порту «Port 3» регистратора — RS-232 полный, исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-2F-H7-H8-H9-H10-H11, при подключении к портам «Port 1»...«Port 5» регистратора — RS-232 не полный — (исполнения регистратора МУР1001.2 RCS H1-H2-H3-2 (H4)-2(H5)-2(H6)-2(H7)-2(H8)-H9-H10-H11) - используются контакты разъемов регистратора, соответствующие RxD, TxD и Gnd порта

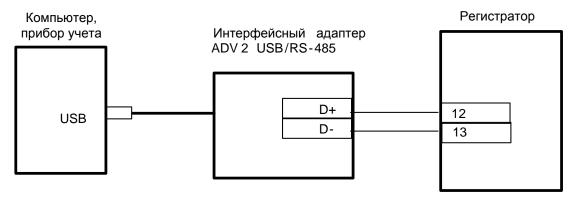



Рисунок В.3 - Интерфейс связи регистратора RS-485, внешнего устройства USB, схема приведена при подключении интерфейсного адаптера к порту «Port 1» регистратора, при подключении к портам «Port 2»...«Port 5» регистратора, нумерация контактов разъемов регистратора будет соответственно «22,23»...«52,53»

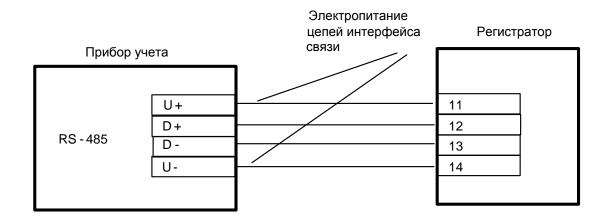



Рисунок В.4 - интерфейсы связи регистратора и внешнего устройства RS-485, электропитание цепей интерфейса связи прибора учета - от регистратора, схема приведена при подключении прибора учета к порту «Port 1» регистратора, при подключении к портам «Port 2»...«Port 5» регистратора, нумерация контактов разъемов регистратора будет соответственно «21,22,23,24»...«51,52,53,54»



Рисунок В.5 - интерфейсы связи регистратора и внешнего устройства USB, схема приведена при подключении прибора учета к порту «Port 1» регистратора, при подключении к портам «Port 2»...«Port 5» регистратора, нумерация контактов разъемов регистратора соответственно «22,23,24,25»...«52,53,54,55»

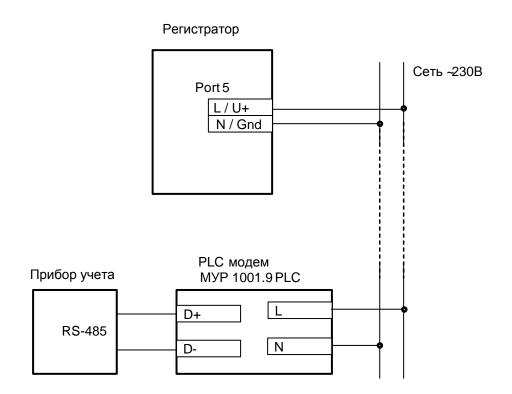



Рисунок В.6 - схема PLC канала связи с прибором учета, исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-PN-H9-AC230-H11

|      | Nº<br>KOHT.      | Пвет              | провода                            |   |
|------|------------------|-------------------|------------------------------------|---|
|      | RJ45             |                   |                                    |   |
|      |                  |                   | Бело - зеленый                     |   |
|      | 2                | Зеленый           | Зеленый                            |   |
|      | 3                | Бело-             | Бело-оранжевый                     |   |
|      |                  | оранжевый         |                                    |   |
|      | 4                | Синий             | Синий                              |   |
|      | 5                | Бело-синий        | Бело-синий                         |   |
|      | 6                | Оранжевый         | Оранжевый                          |   |
|      | 7                | Бело-             | Бело-коричневый                    |   |
|      |                  | коричневый        |                                    |   |
|      | 8                | Коричневый        | Коричневый                         |   |
| Eth  | гратор<br>nernet | Кабель<br>UTP-4:  | L C=                               |   |
|      |                  | оны ввода кабеля  |                                    | I |
| 5/14 |                  | THE BEOGLE RECONN | Компьютер<br>диспетчера<br>Etherne |   |
| 1    |                  | 8                 | Laterile                           |   |

Рисунок В.7 - схема подключения регистратора при работе в информационной сети Ethernet, исполнение регистратора МУР1001.2 RCS H1-H2-H3-E-H5-H6-H7-H8-H9-H10-H11

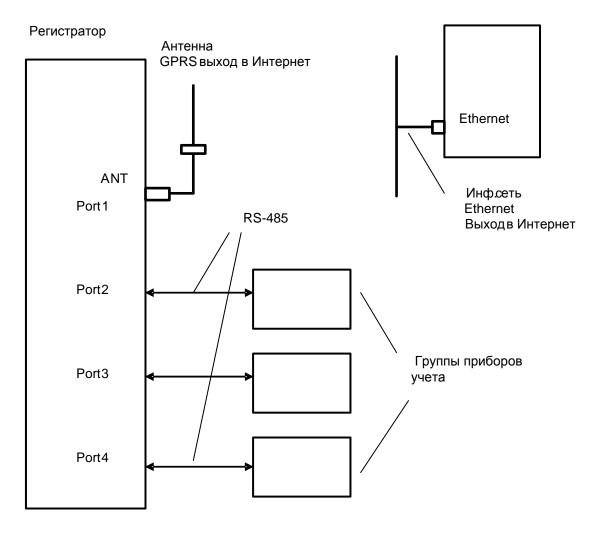



Рисунок В.8 - схема организации канала передачи данных «прибор учета — регистратор - пункт диспетчера» с использованием GPRS - канала передачи данных между регистратором и пунктом диспетчера,

исполнение регистратора МУР1001.2 RCS H1-H2-H3-GSM-H5-H6-H7-H8-H9-H10-H11

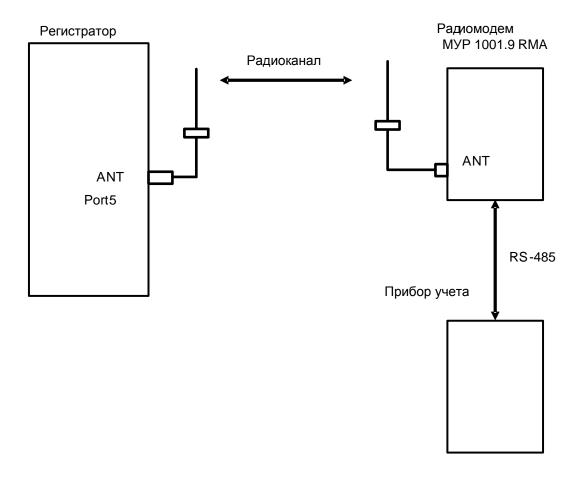



Рисунок В.9 - схема организации радиоканала передачи данных «регистратор - прибор учета», исполнение регистратора MУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-RN-H9-H10-H11

# Приложение Г (обязательное)

Примеры схем подключения к дискретным входам и выходам

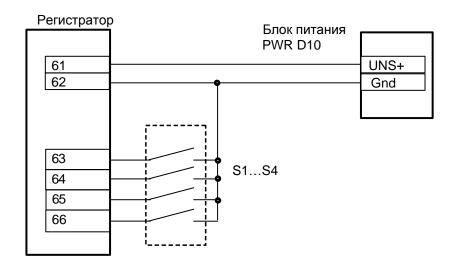



Рисунок Г.1 - схема подключения к дискретным входам, исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8-DI4\_1-H10-H11, S1...S4 -контакты источника входных сигналов

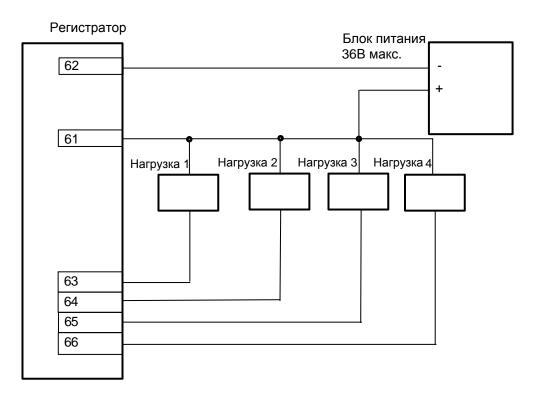



Рисунок Г.2 - схема подключения к дискретным выходам, исполнения регистратора: МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8- DO4\_1-H10-H11 и МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8- DO4\_2-H10-H11

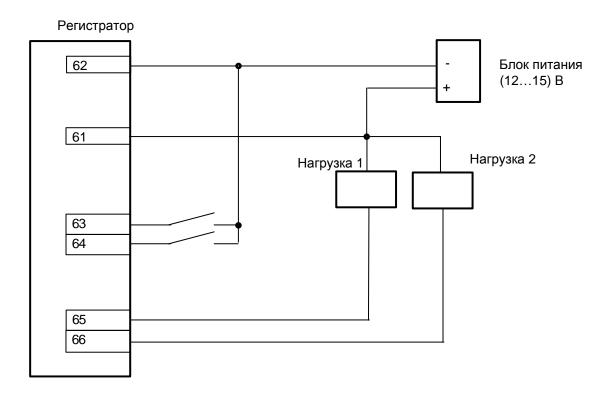



Рисунок  $\Gamma$ .3 - схема подключения к дискретным входам и выходам, исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8-DIO4\_1-H10-H11

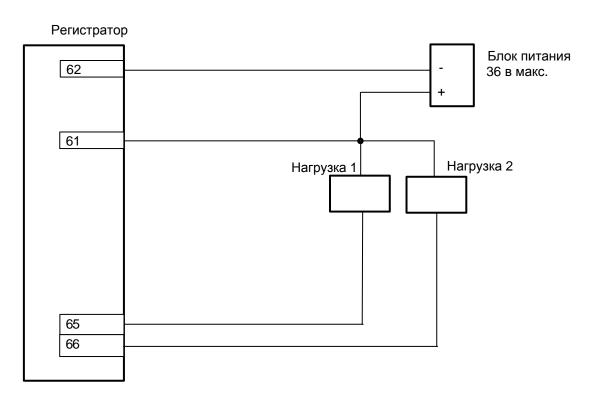
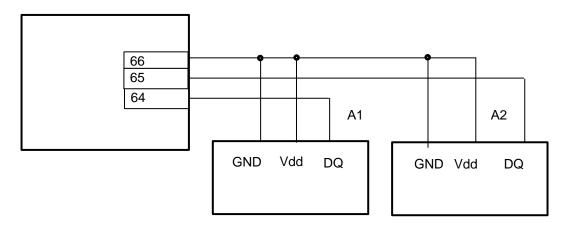
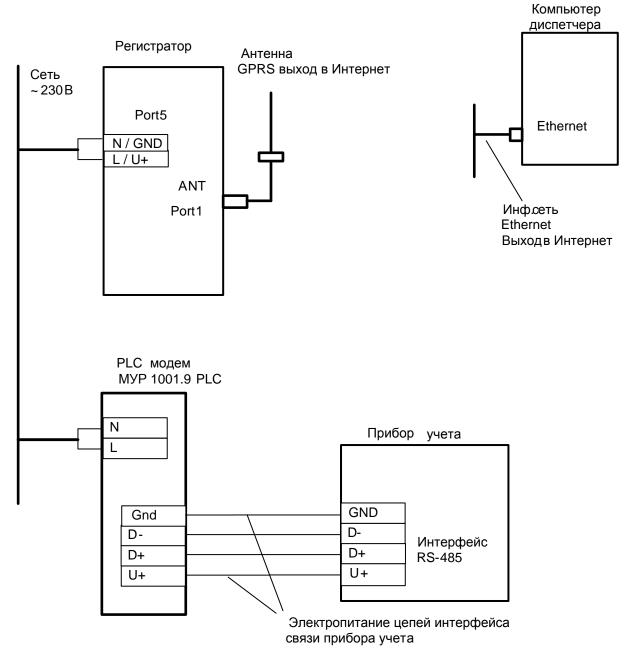




Рисунок  $\Gamma$ .4 - схема подключения к дискретным выходам, исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8-DIO4\_1-H10-H11

# Приложение Д (обязательное)

#### Схема подключения датчиков температуры


#### Регистратор



Исполнение регистратора МУР1001.2 RCS H1-H2-H3-H4-H5-H6-H7-H8- AD1W-H10-H11. A1 и A2 датчики температуры DS18B20.

# Приложение Ж (обязательное)

Схема подключений при организации канала передачи данных «прибор учета – регистратор - пункт диспетчера» с использованием PLC- канала передачи данных между регистратором и прибором учета и GPRS - канала передачи данных между регистратором и пунктом диспетчера



Исполнение регистратора МУР1001.2 RCSH1-H2-H3-GSM-H5-H6-H7-PN-H9-AC230-H11